Chapter 27: Electromagnetic Induction Tuesday October 25th

- Normal lab schedule this week
- Discuss mid-term exam in recitations tomorrow
- Mini-exam 4 next Thursday
- •Brief discussion of mid-term exam results
- Induced currents
 - Magnetic flux and induced currents
 - Induced Electromotive Force and Faraday's Law
- Motional Electromotive Force
 - Connection between Faraday and Lorentz Force Laws
 - •Relativistic Invariance
- ·Lenz's law
- •Inductance (if time)

Reading: up to page 477 in the text book (Ch. 27)

Induced Currents

- It's apparently the change in magnetic flux through a current loop that is responsible for the induced current in the loop.
- In a circuit, we talk about an emf as being the driving force for the current, i.e., the changing magnetic flux induces an emf in the circuit.

Putting it All Together: Faraday's Law

The induced emf in a circuit is proportional to the rate of change of magnetic flux through any surface bound by the circuit.

$\times \times $	
$\times \times $	
$\times \times $	
$\times \times $	\mathcal{V}
$\times \times $	
$\times \times \times \times \times \overset{\bullet}{\bullet} \times \times \times \times \times \times \times \times$	
$\times \times $	
$\times \times $	
\times	
Charge $+e$	

×	×	×	×	×	×	\times	\times	\times	×	×	×	X
×	×	×	×	×	×	×	×	×	×	×	×	X
×	×	×	×	×	×	×	X	X	X	X	×	×
×	×	×	×	×	×	\times	×	×	×	×	×	×
×	×	×	×	×	×	\times	×	×	×	×	×	×
×	×	×	×	×	X	×	×	×	×	×	×	×
×	×	¥	×	×	×	\times	×	×	×	×	×	×
×	×	×	×	×	×	\times	X	X	X	X	X	×
×	Х	×	×	×	×	×	×	×	×	×	×	×
Ch	arg	;e +	-е									

$\times \times $	
$\times \times $	I
$\times \times $	
$\times \times $	V
$\times \times $	\longrightarrow
$\times \times $	
Charge $+e$	

×	×	×	×	×	×	×	×	×	×	×	×	\times		
×	×	×	×	X	X	X	X	X	X	X	X	×		
×	×	×	×	×	×	×	×	×	×	×	×	\times		
×	×	×	×	×	×	×	×	×	×	×	×	×		
×	×	×	×	×	×	×	×	×	×	×	×	\times		
×	×	×	×	×	×	×	×	×	×	×	×	×		
×	×	×	×	×	×	×	×	×	×	×	×	\times		
×	×	×	×	X	×	X	X	×	X	X	×	×		
X	X	×	×	×	×	×	×	×	×	×	×	×		

×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	\times	×	×	×	\times	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	$\overset{V}{\times}$	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
X	X	X	X	×	X	X	X	X	X	X	X	×

×	×	×	×	×	×	×	×	×	\times	×	×	\times
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	\times	×	×	\times	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	\times	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
X	X	X	X	X	X	X	X	X	X	×	X	×
×	×	×	×	×	×	×	×	×	×	×	×	×

×	×	×	×	×	×	×	×	×	×	×	×	\times
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	,×_	X	v^{\times}	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	X	×
×	×	×	×	×	×	×	×	×	×	×	×	×

×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	\times	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×-	X	+X	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	X	×
X	X	X	X	×	X	X	×	X	X	X	×	×

×	×	×	×	×	×	×	×	×	×	×	×	\times
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	\times
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	X	\times	×	×	×	\times
×	×	×	×	×	×	×	×	×	×	×	×	\times
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×

×	×	×	×	×	×	×	×	×	×	×	×	\times
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	\times
×	×	×	×	×	×	×	×	×	×	×	×	\times
×	×	×	×	×	×	×	X	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	\times
×	×	×	×	×	×	×	×	×	×	×	×	\times
X	X	X	×	×	X	X	×	X	X	X	X	×

×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	X	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	X	×	×

×	×	×	×	×	×	×	×	×	×	×	×	\times
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	X	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×

- The magnetic field apparently performs no work, yet the person pulling is doing work.
- Where does that energy go?

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	X	×	×	×	×	×	×	×	×	×	×	×
×	×		×	X	×	X	×	×	×	×	×	×	×	X	×		×	×	X	×	×	×	×
×	×		×	×	×	×	×	×	×	×	×	×	×	×	×		×	X	×	×	×	×	×
×	×		×	×	×	×	×	×	×	×	×	×	×	×	×		×	X	×	×	×	×	×
×	×		×	×	×	×	×	×	×	×	×	×	×	×	×		×	×	×	×	\times	×	\times
×	×		×	×	×	×	×	×	X	X	×	×	×	×	×		×	×	×	×	\times	×	×
×	×	\times	X	X	X	X	X	X	X	X	X	X	X	X	X	×	X	×	×	×	X	×	×
×	X	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	X	×	×	×	×	×	×

×	\times	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	X	×	×	×	×	×	×	×	×	×	×	\times
×	×	×	×	X	×	×	X	X	×	×	×	×	X	X	X	X	\times	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	\times	×	X	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	\times	×	×	×	×	×	×
×	×	\times	\times	×	×	×	×	×	\times	×	×	×	×	×	×	×	\times	×	×	×	×	×	×
×	×	\times	\times	×	×	×	×	×	\times	×	×	×	×	×	×	×	\times	×	×	×	×	×	×
×	×	×	X	X	×	X	X	X	×	X	X	X	X	X	X	X	\times	×	×	×	×	×	\times
×	×	×	×	X	×	×	X	X	×	×	×	×	×	X	X	X	×	×	X	×	×	×	×

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	X	X	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	X	X	×	×	×	×	×	×	X	X	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	X	×	×	×	X	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	X	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	X	X	X	×	X	X	X	X	X	X	X	X	×	X	×	×	×	×
×	×	×	X	×	×	×	×	×	×	×	×	×	×	X	×	×	×	×	×	×	×	×	×

×	×	×	×	×	×	×	×	×	×	×	×	\times	×	×	×	×	×	×	×	×	×	×	×
×	×	×	\times	\times	×	×	×	×	×	×	×	X	×	×	×	×	×	X	×	×	×	×	×
×	×	×	×		×	×	X	X	×	×	×	×	×	X	X	X	×	•	×	×	×	×	×
×	×	×	×)	×	X	×	×	\times	X	×	×	×	×	×	×	×		×	×	×	×	×
×	×	×	×		×	×	×	×	×	×	×	×	×	×	×	×	×		×	×	×	X	×
×	×	×	×		×	×	×	×	×	×	×	×	×	×	×	×	×		×	×	×	X	×
×	×	×	×		×	×	×	×	×	×	×	×	×	×	×	×	×		×	×	×	×	×
×	×	×	×	×	×	X	X	X	×	X	X	X	X	X	X	X	×	X	×	\times	\times	×	×
×	×	×	X	X	×	X	X	X	×	X	×	×	X	X	X	X	×	×	×	×	×	X	×

×	\times	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	\times	×	×	×	×	×	×	×	X	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	K	×	X	X	×	×	×	×	X	X	X	X	X	×	×	×	×	×	×
×	×	×	×	×	K	X	×	×	\times	X	×	×	×	×	×	×	×	\times	×	X	X	×	×
×	×	×	×	×	K	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	K	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	K	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	X	X	X	X	×	X	X	X	X	X	X	X	X	×	×	×	×	×	×
X	×	X	X	×	X	X	X	X	×	X	×	×	X	X	X	X	X	×	X	X	X	X	×

What about this situation?

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	X	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	\times	X	X	×	×	×	×	×	X	X	×	X	X	×	\times	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	X	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	\times	×	$\times V$	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	X	X	×	X	X	X	X	X	X	X	X	X	X	×	×	×	×
X	×	X	×	×	X	X	×	×	X	X	×	×	X	×	×	×	×	×	×	×	X	X	×

Is there a motional emf?

Motional emf and the Lorentz Force Law

$$v = -\frac{dx}{dt} \qquad \Rightarrow \varepsilon = -BL\frac{dx}{dt} = -\frac{d}{dt}(BLx) = -\frac{d}{dt}(BA) = -\frac{d\Phi_B}{dt}$$

- Thus, Lorentz force law and Faraday's law apparently the same...
- What is magnet moves instead of the current loop?

Motional emf and the Lorentz Force Law

An example of relativistic invariance

Magnetic flux: $\Phi_{B} = \int \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = BA\cos\theta$

1 weber = 1 tesla \cdot meter²

Faraday's law:

$$\varepsilon = -\frac{d\Phi_{\rm B}}{dt}$$

- Induced emf drives a current which opposes the change in the applied magnetic field.
- This required on basis of energy conservation.

Attractive interaction (always opposes change) Right-hand rule with thumb this way